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It is shown that the basic assumptions of the classical density functional 
approach are rigorously correct for H-stable systems in the grand canonical 
ensemble. Moreover, it is established that the set of all single-particle densities is 
convex. These results are derived by providing necessary and sufficient 
conditions for the solution of the classical inverse problem for single-particle 
densities. Analogous results are obtained for the solution of the higher-order 
correlation inverse problem, and the ramifications of these results for the 
validity of two-body decomposition of forces are discussed. 
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1. I N T R O D U C T I O N  

The classical inverse problem is the question of whether a preprescribed 
function corresponds to the equilibrium single-particle density in a given 
system under the influence of an external potential. This problem was 

thoroughly addressed in Ref. 1 for both the canonical  and grand canonical  
ensembles. Of notable absence was a substantive result for systems with 

hard-core interactions. 

In this paper, we examine the inverse problem for/- /-s table systems in 
the grand canonical  ensemble. Since hard cores are typically introduced into 
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model systems to guarantee H-stability, the class of problems analyzed here, 
together with those treated in Ref. 1, includes essentially all cases of physical 
relevance (in the grand canonical distribution). 

The inverse problem arises in the density functional approach to the 
theory of nonuniform fluids. (2-8) There one is concerned with the relationship 
between three kinds of functions: probability distributions, one-body 
densities, and external potentials. The standard approach, (4's~ reviewed in 
Section 2, entails the study of certain functionals whose extremum values 
correspond to thermodynamic potentials of the system. Although these 
functionals are naturally defined on a set of probability distributions, it has 
been found useful to view them as functionals of single-particle densities. 
Hence the density functional approach requires that every density p, which is 
the single-particle reduction of a probability distribution F, is the equilibrium 
single-particle density at some external potential U. 

The inverse problem is the question of whether the map p b-~ U exists 
for some given density. For the purposes of density functional theory, one is 
concerned only with those densities which are obtained as single-particle 
reductions of probability distributions. In Section 3, we show that the 
necessary and sufficient condition for existence of the map p ~-* U in H- 
stable systems is that p is the single-particle reduction of an admissible 
probability distribution. (Our criterion of admissibility is simply that the 
positive part of one of the corresponding thermodynamic functionals is 
finite.) Our results imply that the functionals introduced in Section 2 achieve 
minima over the set of all probability distributions which reduce to a given 
density. This assertion is the cornerstone of the classical density functional 
approach. (4,5) 

The above results demonstate that the basic assumptions of density 
functional theory are rigorously correct for H-stable systems. However, in 
order to proceed with the density functional approach, it is necessary to 
establish certain properties of the set of all single-particle densities. For H- 
stable systems in the grand canonical ensemble, it was shown in Ref. 1 that 
this set is open (in the L 1 strong topology). In Section 3, we prove that the 
set is convex. Furthermore, we show that the density functionals introduced 
in Section 2 are convex functionals on this set. As stressed in Ref, 9 (see also 
Ref. 10), convexity is a crucial property in variational theories of this sort. 
Moreover, in various applications of classical density functional theory, (2-4'6) 
it is assumed that there is a one-parameter family which continuously 
extrapolates between any two admissible densities. Convexity guarantees that 
such a family may be constructed. In this regard, it should be noted that 
convexity fails for certain formulations of the (quantum) density functional 
approach to the inhomogeneous electron gas.~ 

We should like to point out that, although the conditions specified in 



Inverse Conjecture in Classical Density Functional Theory 473 

Section 3 for the solution of the p ~ U problem are clearly necessary, they 
are not verifiable in the sense of the sufficient conditions imposed in Ref. 1. 
Thus, while our analysis closes the question of the inverse problem for 
classical density functional theory of H-stable systems, it does not provide a 
complete characterization of all possible single-particle densities. The authors 
feel that those aspects of the inverse problem which do not concern density 
functional theory are nevertheless interesting and important. 

The techniques developed in Section 3 easily extend to higher-order 
generalizations of the inverse problem. For example, one may ask whether a 
given function of two variables corresponds to the two-point function of a 
system under the action of some two-body potential. The inverse conjecture 
for two-point functions has recently been used in extensions of the density 
functional approach.(l~) 

In contrast to the one-body problem, the inverse problem for two-point 
functions in a noninteracting system is not explicitly solvable. Indeed, in this 
case, the existence of a solution implies that a given two-point function is 
realizable by the application of a two-body potential. As such, a proof of the 
inverse conjecture even in this special case constitutes a nontrivial statement 
on the validity of two-body decomposition. 

In Section 4, we examine the m-point inverse conjecture in the truncated 
grand canonical ensemble. It is shown that the inverse problem possesses a 
unique solution for any log summable m-point function obtained as an m- 
particle reduction of a probability distribution. 

2. DENSITY FUNCTIONAL THEORY 

Although the density functional approach has typically been used for 
systems defined on ~a, there is no difficulty in extending the formulation to 
the general setting introduced in Ref. 1. Let x C A denote all coordinates of a 
given particle. We need only assume that the corresponding measure space 
{A, dx), henceforth called the single-particle space, is a-finite. All spaces of 
physical relevance are a-finite. Thus the results derived here, as in Ref. 1, 
may be applied to lattice or continuum systems in any dimension. Moreover, 
the space, which need not be Euclidean, may include momenta or internal 
coordinates (e.g., intrinsic spin). We denote by f dx all relevant summations 
and integrations. 

The N-particle state is defined on the product space (A N, dNx). The 
measure space for the grand canonical ensemble is obtained by taking the 
direct sum: 

N = 0  

{A ~ d~ -= 1 (2.1) 



474 Chayes and Chayes 

A system in the grand canonical ensemble is specified by a family of 
interactions 

W = ( W N : A N ~ R * I N = I , 2 , . . . ) ;  R*-----{R~m} (2.2) 

The function WN= WN(X 1 .... ,XN), which is assumed to be measurable, 
represents the interaction of the N-particle state in the absence of an external 
field. For convenience, we absorb the chemical potential, -Np,  into the 
definition of W N and take inverse temperature fl = 1. As in Ref. 1, W N need 
not be endowed with any particular symmetry (e.g., exchange), nor bear any 
functional relationship to W M, M 4= N (e.g., two-body decomposition). 

For each N, the measurable set 

QN = {(X,,...,XN) E AN I WN(X 1 ..... XN) = m} (2.3) 

represents the hard-core excluded region. Henceforth, all equalities shall only 
be assumed to hold almost everywhere o n  A N \ Q N  . 

The grand canonical average of a family of functions 
f =  ( fN:AN~ JR+ I N =  1, 2,...) is defined by 

( f ) w  = 1 + ~ fNe--WNdNx (2.4) 
N = I  

Any family f satisfying ( f}w < m defines a probability distribution F = 
(FNIN = 0, 1, 2,...) on (11, dX) given by 

F 0 =  [(f}w] -1, FN=fNe--WN[(f}w]--I (2.5) 

Note that the functions F N are automatically zero on the sets QN, and thus 
respect the existing hard-core structure. 

e - U ( x i )  Consider the family of product functions given by (]fiN 1 I 
N =  1, 2,...)--n(e -v)  for some measurable function U: A ~ JR*. Clearly, U 
has the interpretation of an external potential. The average (Tc(e-V)}w is the 
partition function of the system at external potential U, and shall be denoted 
by Z(U). If Z(U) < c~, the family of product functions defines a Gibbs 
distribution, 

1 w N 
Gv= -- -~-~e-  U I ]  e-V lN=O,  1,2,...) 

A one-body density is defined to be the (symmetrized) single-particle 
reduction of a probability distribution F: 

Pr(Y) = ~ FN(X 1,..., xi_ 1, y, Xj+x .... , X N )  d x  I . . .  d ~ j  . . .  d x  N (2.6) 
N ~ I  = 
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Here we shall only consider distributions with finite first moments, so that 
the corresponding one-body densities represent systems with finite expected 
particle numbers (i.e., nF= fPF(Y)dy < ~ ) .  We denote the set of all such 
distributions by c.~. 

We shall use the notation Pu, rather than Pov, for single-particle 
reductions of Gibbs distributions. These special one-body densities are called 
single-particle densities. The set of external potentials for which a single- 
particle density exists [i.e., Z(U) < oo] and is in L ~ (i.e., fPv  < oo) shall be 
denoted by ~'w- 

The starting point of density functional theory is the introduction of 
functionals of probability distributions, whose extremum values correspond 
to thermodynamic potentials of the system. The principal functionals are 

q j ( F ) = f F ( W + l o g F ) ~ F o l o g F o  + ~, 1 fA FN(WN+IOgFN) dNx 
7==I N! N\O u 

(2.7) 

and, for S ~ ~'w, the grand canonical potential 

Ds(F) = f F ( W -  ~ S + log F) 

I (A (V/N N = F o log F o + V' FN + • S(xi ) 
~=1 N! ~\oN i= I 

+ log FN) dNx (2.8) 

It is easy to show that X?s(.) is minimized by the Gibbs distribution Gs, and 
that its extremum value is - log  ~(S). 

The functionals S2 s and ~ are related by 

os(r) =f prS + (2.9) 

provided that the right-hand side of the above is well defined. In particular, 
for Gibbs distributions 

and 

(av)  = - ( u -  log z ( u )  

X?s(Gu) = f pv(S - U) - log Z(U) 

(2.10) 

(2.11) 

In some cases of physical relevance, certain terms in equations 
(2.9)-(2.11) are not separately well defined. This problem may often be 



476 Chayes and Chayes 

traced to the divergence of f PF [log Pr I. In such circumstances, this difficulty 
can be circumvented by considering instead "renormalized" functionals. For 
example, 

�9 \ Q N  i = 1  

This renormalization corresponds, in some sense, to a subtraction of the 
ideal gas (W = 0) behavior of the functional ~. Such a procedure was 
invoked in Refs 1 and 5, and is discussed in Ref. 10. Moreover, when viewed 
as a function of single-particle densities, ~ren serves as a generating 
functional for the direct correlation functions of a nonuniform fluid.~5'l~ 

The strategy in density functional theory is to view ~: and I2 s as 
functionals of densities rather than probability distributions. However, one is 
immediately faced with the nonuniqueness problem: There are in general 
many distribution functions, F ~ 9 ,  which reduce to the same density PF" 
For p ~ L 1, let us define the set 

p - ' ( ~ )  = {F G ~ I P F  =P} (2.13) 

In light of the above degeneracy, it is not possible to expresses ~ and .c2 s 
directly as functionals of densities. However, it is always possible to define 

~(p) = inf{~(F) IF C p-~(c2)/ (2.14) 

.0s(p) = inf{g?s(F ) ] r C p - 1(9)} (2.15) 

and similarly for the renormalized functionals. The utility of these 
functionals is a consequence of the following proposition. 

Proposition 2.1. If, for some U E g/w, G U C p-  ~(@) and 
fp  I U] < oo, then (a) U is unique, and (b) ~tP) = q6(Gv), i.e., the infimum in 
equation (2.14) is a minimum�9 

Proof. (a) This was proved in Ref. 1 (see also Ref. 5). For 
completeness, observe that this follows from a straightforward application of 
either the Jensen or the Cauchy-Schwarz inequality�9 

(b) First note that, for each N, W N may be written in the form 

N 

W N = --log(Gv) N - ~ g(xi) - l o g  ..E(g) (2.16) 
i = 1  
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Hence for every F G p - l ( ~ )  

+ (2.17) 

However, by Jensen's inequality 

1 ~ 1 
--~ ~.  f FNIOg[(Gu)N/FN] >/--Iog [~_, ~ .  f (Gu)x] = 0  ! (2.18) 

Remarks. (1) In the proof of uniqueness, the hypothesis fp [U[ < oo  

may be replaced by the hypothesis f p I U + log p / < oo. As will be shown in 
Section 3 (Proposition 3.2), the latter condition is automatically satisfied in 
H-stable systems whenever G v C p-1(~). 

(2) Assuming all terms in ~s(Gv) are defined, a proof along the lines 
of (b) shows that .0s(p)= s Similar proofs also hold for the renor- 
realized functionals. 

The principal assumptic~n of density functional theory is that the 
functionals ~ and .0s, which we take to be defined by infima as in 
Eqs. (2.14) and (2.15), do in fact achieve minima. The above proposition 
reduces a proof of this conjecture to the inverse problem, namely that there 
exists a unique U G g/w such that Pu = P. In the following section we shall 
show that, for H-stable systems, the inverse conjecture holds whenever an 
appropriate density functional can be defined. 

3, THE INVERSE PROBLEM FOR H-STABLE SYSTEMS 

In this section, we consider the inverse problem for H-stable systems. 
Our principal result (Theorem 3.4) is that the single-particle reduction of any 
distribution F ~ 9 ,  with the positive part of ~ren(F) finite, is also a single- 
particle density. Note that if for some density p, the above condition is not 
satisfied for any F Ep-'(~), then ~ren(/o) is infinite, or even undefined. 
Thus this theorem establishes the validity of the inverse conjecture for all 
densities which are relevant in the functional approach. 

As a corollary, we prove that the set of single-particle densities is 
convex. Moreover, we show that the functionals ~ and A s are convex on this 
set. 
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Definition. An interacting system is said to be H-stable if there is a 
constant B < oo such that, for each N, 

W N >1 - B N  a.e. [dNx] (3.1) 

Furthermore, we take W 1 C L ~~ 

Remark.  The above differs from the standard definition of H-stability 
in that we require W~ to be bounded above. Note, however that this 
condition is no restriction in physical systems since -W1 is simply the 
chemical potential. 

Proposition 3.1. For any H-stable interaction, W, the set of external 
potentials, ffw, coincides precisely with the set 

= IU: A --, ~ * ] e - v  C L l (dx ) }  (3.2) 

ProoL This is easily established by noting that 

1 + [le-Vllx exp[-II W~llool ~< ~(u)  ~< exp[lle-VLllB] 

while IlPvll~ is bounded above by the ratio of these two estimates. 

Proposition 3.2. 
V: A ~ ~ defined by 

(3.3) 

| 

Let U ~ ft.  For any H-stable system, the function 

e - v  = p v e  - v  (3.4) 

is in L ~. 

ProoL This is exactly proposition 8.14 of Ref. 1. The proof follows 
from an estimate similar to Eq. (3.3). II 

Remark.  For certain F C ~ ,  the functionals ~,~re~, and ~s  
introduced in Section 2 may be infinite or even undefined. However, the 
positive parts of the functionals are always unambiguously defined and are 
given, for example, by 

[~(F)]+ = ~ F u ( W u + l o g F u ) + d U x  (3.5) 
N = 0  

where (W N + logFN) + -- max{(W N + logFN), 0}. For finite volumes, 
[~(F)]+ < oo implies [~re"(F)]+ < oo; however, the reverse implication does 
not hold unless f P e  I1ogPFI < OO. 

We denote by ~'~ the set of distributions 

= {F E ~ [ [~ ren( f ) ]  + < oO } (3.6) 

It is clear that ~ is the natural domain of the functional ~re,. 
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Lemma 3.3. Let F ~ p-l(~ff). Then for e > 0 sufficiently small, there 
exists an F~C ~ such that p v =  (i + e)p. 

Froof. Let F = (FN) ~ p - 1 ( ~ )  and take t > 1. DefinefN(t; xl .... , xu) = 
tFN(x , ..... XN) and 

(Fu) ,~t) = fN ( t ) / ( f ( t )  ~ W (3.7) 

Then Fe(t) satisfies 

with 

PF~,,, = I1 + e(t)]p (3.8) 

e(t) --- Fo(t -- 1)/It -- Fo(t - 1)] (3.9) 

Thus, by taking t sufficiently large, any e < F0/[1 - F 0 ]  may be achieved. It 
is easily verified that F~ C ~ .  II 

Theorem 3.4. In //-stable systems, the necessary and sufficient 
condition for a nonnegative function p C L 1 to be the single-particle density 
of a Gibbs distribution Gt; with U C g/ is that there exist an F E p -  1 (~) .  

Proof. Necessity is straightforward. Suppose that p = p u  for some 
UC g/. Then, writing U in the form e -U = p e  -v,  we have 

[~ren(Gu)]+ <~fp[VI + log -~(u) (3.10) 

which is finite since V E L ~. 
In order to prove sufficiency, we shall use a variational approach 

similar to that employed in Ref. 1. Consider the functional 

where ~ [ V ] = ~ 2 ( U = - - l o g p +  V). The class of functions on which 15 is 
defined is given by 

~/~= I V : A ~  f p , V l <  ~ , Z [ V ] <  ~ I  (3.12) 

Note that W" is not empty; indeed, by H-stability, ~ contains all bounded 
functions. 



480 Chayes and Chayes 

First we claim that (5 is uniformly bounded above in ~ ' .  To see this, 
recall that by hypothesis there exists F = (FN) E p - l ( ~ )  in terms of which 
we may write 

f N 1 e wN I~ pe v dNx s t v l  = ~. 
N=O 

( N t  ;ex. 
N = 0  

>~ 2o ~yf exp [--(WN+l~176 exp ( V )  F N dNx 

(3.13) 

We note that the measure dF=[(1/N!)FNdNXIN=O, 1,2,...] is a 
normalized measure on the space @ff-0AN. Moreover, since 
[~ren(F)]+ < m and V ~ ,  the arguments of the two exponents in 
Eq. (3.13) are in the Fock space LI(dF)=-II(@~_oL~(AN, dFN)). Applying 
Jensen's inequality, we obtain 

~[V] ~exp(--[~ren(F)]+)exp (--f pV) (3.14) 

from which it follows that 15 is uniformly bounded. 
Let (Vk) denote a maximizing sequence for 15 in ~/-. Consider the Fock 

space kZ(dZ) where the measure dX is given by 

( 1 e_Ws~pdNxlN=0,1,2,..) (3.15) ds=---NT 

For each k, the product function 

~z(e-V~/2) =_ e-Vk(xi)/2 I N = 1, 2,...) 

is in L2(d~ ') since the square of the k2(dS) norm is s~mply 
function, i.e., 

IIl~(e ~*/~)lll~ = Z[Vk] 

the partition 

(3.16) 

We claim that a subsequence of the functions g(e -vk/2) converges 
weakly in L2(dS) to a function ~(e-V/2). Moreover, the function V so 
obtained is the unique maximizer of 15, and the potential U = - l o g  p + V 
satisfies Pv = P. 
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In order to establish weak convergence, we first show that the norms 
Ill e-Vk/2 I]r2 are uniformly bounded above. Indeed, suppose this is not the case. 
Then there is a subsequence, which we also denote by (Vk), such that 

Z[Vk] ~ ~ (3.17) 

However, since any subsequence is also a maximizing sequence, this implies 

exp 

Now recall (Lemma3.3) that 
Repeating the arguments used to 
obtain 

there is an F ~ C ~  with pe=( l+e)p .  
bound the functional with F replaced F~, we 

15(Vk) ~< (1 + e)" exp{[~re'(F,)]+ } exp (e f PVk) (3.19) 

with n=--fp. This, however, implies 15(Vk)~0, which contradicts the 
assertion that (Vk) is a maximizing sequence. 

The remainder of the proof is essentially the same as that of 
Proposition 8.3 and Theorem 8.4 in Ref. 1. For completeness, we shall sketch 
the principal steps. First, since the sequence of functions 7r(e -vk/2) is k2(dX) - 
norm bounded, the Banach-Alaoglu theorem ensures that a subsequence 
converges weakly. Although it is by no means obvious that the limit function 
is of the form n(e-V/2), this follows from the fact that, for each N, the 
m e a s u r e  e - W u  ~INp dUx is absolutely continuous with respect to  l~[Up dNx, 
while for N =  1, the corresponding measures are equivalent (see Ref. 1, 
Theorem A.6 for more details). 

Next, it must be shown that the limiting V so defined is in the set 
and that it maximizes 15 in this set. It is not difficult to show that 
V C Ll(pdx). The fact that V+ C LI(p dx) (which proves VE 7/') and that 
V actually maximizes the functional can be ascertained from the inequality 

exp 

a proof of which is given in Ref. 1. 
Finally, a standard variational argument shows that the function U 

defined by e v =pe-V satisfies p =Pu a.e. [dx]. II 

Remark. The above theorem provides a necessary and sufficient 
condition for the existence of a solution to the inverse problem in any H- 
stable system. By contrast, in Ref. 1 we found sufficient (but not necessary) 
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conditions for the existence of a solution in systems which need not be H- 
stable. In particular, rather than H-stability, we required that every constant 
potential V = const be in the set ~ .  The results of the previous paper may in 
fact be recovered as a special case of those in this paper if the assumption of 
H-stability in Theorem 3.4 is replaced by the above condition on constant 
potentials. In that case, the above proof of sufficiency is still legitimate. The 
additional condition imposed in Ref. 1 is easily seen to correspond to the 
explicit construction of a particular F satisfying the conditions of 
Theorem 3.4. 

Corollary. In any H-stable system, the set of single-particle densities 
is convex. 

Proof. Let Pl and P2 be single-particle densities corresponding to the 
potentials U1 and U 2, respectively. We must show that for 2 ~ [0, 1] 

P,~ =)~Pa + (1 - -2)p  2 (3.21) 

is also a single-particle density. By Theorem 3.4, it is enough to establish the 
existence of an F C ~ such that PF~, ---- P3t. Indeed, it is easy to verify that the 
convex combination of the Gibbs distributions 

F~ = .~Gu1 + ( l  -- ~[,) GU2 (3.22) 

is a probability distribution with the desired properties. Clearly PeA = Pa. 
Moreover, 

[i~re"(Fa)]+ <~lloga[+llog~l(Anl +(1-;~)n2)< oo (3.23) 

where a=max{1/Z(U~), 1/Z(U2)}, f l=max/ l l e  v111~/2, lie v2lj~/(1-)~)} 
andni=fp  i. II 

Proposition 3.5. The density functional ~(p) is convex on the set of 
single-particle densities. 

Remark. As noted earlier, if f Pv]l~ Pvl is divergent, the functional 
~(pv )=- fpvU- logZ(U)  may be ill defined, i.e., of the form "infinity 
minus infinity." However, even in these cases, the proposition is legitimate 
provided that convexity of q~ is interpreted as negativity of the convex dif- 
ference: 

q~(2pl + (1 --)],)P2)- )],~ (,o 1)-  (l - 2 )  ~(,o2) (3.24) 

a quantity which is always well defined (although possibly equal to -oo) .  In 
the proof given below, we shall assume for the sake of simplicity that all 
terms are well defined. 



Inverse Conjecture in Classical Density Functional Theory 483 

Proof. Let p, and P2 be single-particle densities corresponding to the 
potentials U~ and U 2. Define p~ and F a as in the proof of the corollary to 
Theorem 3.4. It then follows immediately from the manifest convexity of 
~(F) and Proposition 2.1b that 

q~(p~) = inf{~(F) I F E p 1(~)} 

< ~(Fa) 

~< 2~(Gv,) + (1 - 2) ~(Gv2 ) 

= 2qd(p,) + (1 - 2) ~(P2) I (3.25) 

Remark. The functional .Os(p) differs from ~(p) simply by a term 
linear in p, and thus is also convex. 

4. HIGHER-ORDER CORRELATION FUNCTIONS 

The inverse problem for higher-order correlation functions is the 
question of whether it is possible to produce any given mth order correlation 
function by augmenting a given system of interactions, W = (WN), with some 
"external" m-body interaction. Although the physical interpretation of an 
"external" m-body interaction is somewhat obscure, this form of the inverse 
problem has interesting applications in many systems (1 ') (see also discussion 
below). 

Under conditions analogous to those imposed in Section 3, one expects 
that if a given function of m variables is the m-body reduction of an 
appropriate probability distribution, it is also the mth order correlation 
function of the system augmented by a unique m-body interaction. Indeed, 
the conditions under which such a result is established (Theorem 4.1) 
amount again to the finiteness of certain thermodynamic potentials. 

This result is of some interest with regards to the modeling of physical 
systems. It is often convenient to approximate physical forces by the sum of 
two-body interactions. Although it is not generically the case that "real" 
interactions are exclusively two-body, it is widely believed that, in some 
sense, this is a good approximation. Theorem 4.1, specialized to the case 
W = 0 and m = 2, sheds some light on the validity of this approximation. 

Suppose that various measurements are Performed on a physical system 
in equilibrium. It can be argued that the "best" two-body approximation to 
the system--should it exist--is the one which produces a second-order 
correlation function identical to that observed. Theorem 4.1 says that such a 
two-body approximation does indeed exist if the measured correlation 
function is the two-particle reduction of a probability distribution 
corresponding to certain finite thermodynamic potentials. However, the 
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existence of the required probability distribution is guaranteed--it is simply 
the actual distribution of the physical system under observation. 

Of course these results also apply to the question of m-body decom- 
position, m > 2; however this issue is of less relevance to existing models. 

The inverse problem for higher-order correlation functions may be 
formulated in analogy with previous sections. Consider a system specified by 
an interaction W = (WN). The total interaction in the presence of an m-body 
"external" potential, S:  Am--* ~, is given by 

WN(X1,...,XN) JU ~.~ S(Xpl,...,Xpm ) (4.1) 
PE~N,m 

where ~N,m denotes the (~) permutations of N objects, taken m at a time. In 
order to simplify our notation, we shall henceforth assume that the 
interactions W N and S are symmetric functions. 

The mth order correlation function of the augmented system is given by 

%(S; x~,..., xm) 

~,(S) N~m U[ NX0 N &-- 

In the above, 3 (S)  is the partition function of the augmented system, and QN 
again denotes the N-particle hard-core excluded region. The m-body 
reductions of probability distributions, am(Fix1,..., xm), can be defined by a 
similar procedure. 

In a particular system, W = (WN), the m-body inverse problem is the 
question of whether, for a given nonnegative (symmetric) function 
a m E L a(dmx), there exists an m-body interaction S such that c~ m = am(S ). 

For the purposes of the higher-order problem, we shall restrict attention 
to systems which obey certain finiteness conditions. First, we require that the 
volume IAI= fa dx, is finite. We also work in the truncated ensemble (i.e., 
W u -= oo for N > N ' ) - -which  is typical in finite volumes if hard cores are 
present. Finally, we assume that in the absence of externally imposed 
interactions, the partition function is finite. Of course this last condition is 
automatically satisfied if the system is H-stable; here, however, we need not 
impose any pointwise bounds on the W x. 

In addition, we shall impose a "mechanical stability" condition on the 
structure of the hard-core excluded regions. For the m-point inverse problem, 
we require that if (yl,..., Ym)C Qm, then for almost every (xm+~,..., x~), 

( f l  ..... Ym, Xm+l .... , XN) ~ QN (4.3) 
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A violation of the above condition would imply that the injection of 
additional particles into the system allows more freedom of movement to 
those already present--a physical absurdity. 

For clarity of exposition, we shall take W m C L~176 on Am\Q m for the 
solution of the m-point problem. However, it should be noted that this 
condition can be replaced by the weaker assumption 

t" (Win) + a m dmx < oo (4.4) 
J A m \ Q  m 

Consideration of systems which violate the above condition would introduce 
a new, and not particularly interesting complication; namely, that the 
external m-body potential would have to compensate for a pathological m- 
body interaction, in addition to affecting the interactions for N > m. 

In our analysis, we shall assume that the given m-point function is log 
summable: 

f a m log a m dmx < oo (4.5) 

If this condition is not satisfied, then the entropy per particle is infinite. We 
note also that the assumption of finite volumes implies that for any 
measurable function f 

f If] log If] > --oo (4.6) 

It follows that, in finite volumes, the set of log summable functions is a 
convex subset of L 1. In order to circumvent the assumption of log 
summability, a renormalization scheme analogous to that employed in 
Section 3 would be required. This may prove difficult since for m > 1 there is 
no exact solution for the ideal gas ( W -  0) case. 

Our analysis is quite similar to that of Section 3. Here we consider the 
functional 

~m(F ) = \~ 1 fa FN(WN + log FN) d~x 
N~"-'-m N! N\Q N 

(4.7) 

which is well defined for distributions in the set 

~m = {FE ~ [ [~m(F)]+ < oo} (4.8) 

Our principal result is the following: 
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Theorem 4.1. Let W = (WN) be a system of interactions for a trun- 
cated grand canonical ensemble. Furthermore, let W be such that W m E L ~ 
on Am\On, ~(0 )  < oO and the hard-core excluded sets satisfy the mechanical 
stability condition (4.3). Then the necessary and sufficient condition for a 
nonnegative, log surnmable function ctELl(dmx) to be the mth-order 
correlation function of the system augmented by an m-body potential S:  
A m --, ~ is that there exists' an F ~ a-l(~m).  Furthermore, S is unique. 

Proof. Necessity is easily established. Suppose that such an S exists. 
Then, taking F N = [1/~(S)] e -WN U e-S, we have 

1 
[~i,,(F)]+ ~ Z(S----~ u~m -~. ~ e-Wu V[ e-s  S + log •(S) 

f aS_ dmx -I- log Z(S) (4.9) 

It therefore suffices to show that f a S  < m. Let A be the set on which S is 
negative and a = fA a > 0. By Jensen's inequality, we have 

o v > Z ( S ) / > a e x p - t l W , , t [ ~ + - -  aS - a l o g a  (4.10) 
a 

from which it follows that f a S  < oo. 
In order to prove sufficiency, we again use a variational approach. 

Consider the functional 

= exp 

defined on the set of functions 

( 

Y =  I S : A m ~  ~a  ISI< oo, ~ ( S ) <  c~ I (4.12) 

The set Y is not empty since 0 C 5 p. Furthermore, since by hypothesis there 
is an F E ~ n  with am(F ) = ct, the functional is uniformly bounded in ~ by 
an estimate analogous to that in Eqs. (3.13) and (3.14). 

Let (Sk)be a maximizing sequence for ~ in Y .  By an argument iden- 
tical to that in the proof of Theorem 3.4, we may establish weak L2(dO) 
convergence of a subsequence of the functions ~rm(e-Sd2). Here 

ZCm(e-S/2)==- l p V[ , exp[-S(xp ,, .... Xpm)/2] t N )  m I (4.13) 
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and dO denotes the measure 

dO= (~-~. e-W"dUxlN>~m) (4.14) 

Consider a particular N-particle term in Eq. (4.13). Although the term 
is a product of functions, it differs from the corresponding products i n  
Section 3 in that the individual factors are not defined on separate spaces. 
Therefore the results of Ref. 1 (Appendix A) cannot be used to prove that the 
limit of the sequence ~m(e -sk/2) is of the form ~r~(e-S/2). It is, however, 
possible to establish strong convergence, from which the desired result will 
be shown to follow. 

Strong k2(d6)) convergence of ~ ( e  -sk/2) is a consequence of the weak 
convergence and certain convexity properties of the functional ~. A similar 
result is established in Ref. 1 (Theorems 6.2 and 8.16), to which the reader is 
referred for details. 

From the strongly convergent sequence, we may extract a further subse- 
quence which converges pointwise a.e. [dO]. This implies, in particular, that 
Sk(x 1 .... ,Xm) converges pointwise a.e. to some function S(x 1 .... ,Xm) on 
A r~\Q m. The required form of the limit now follows directly from the 
condition of mechanical stability. 

An argument along the lines of that in the previous section shows that 
S ~ Y and that S actually maximizes ~. That am(S ) --a follows from the 
variational principle, a proof of which is facilitated here by the truncation of 
the ensemble. 

The proof of uniqueness requires two steps. First, we must show that if 
ctm(S) -- a, then S ~ Y .  This follows from the Jensen inequality and the fact 
that ~(0)  < co. Next, again using Jensen's inequality, it can be shown that if 
am(S~) = am(S2) with $1, $2 E Y ,  then S L = S 2 a.e. (see Ref. 1, Theorems 
2.4 and 8.5, for details). II 

Corollary. Let W = (WN) be a system of interactions satisfying the 
conditions of Theorem 4.1 on a finite measure space (A, dx). The set of all 
log summable ruth-order correlation functions which may be produced by 
augmenting W be an external m-body potential is a convex set. 

Remark. As noted in the Introduction, the hypothesis that there exist 
an F C  a-~(~m),  while necessary for the solution of the inverse problem, is 
by no means trivial to verify. This is particularly true for m > 1. In this 
context, it should be noted that the question of constructive criteria for a 2 to 
arise from some F has been considered in the literature (see, for example, 
Yamada t12~ for necessary conditions in some spcial cases). 
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